

Carbohydrate Research 263 (1994) 327-331

Note

The structure of the *Citrobacter freundii* O8a,8b O-specific polysaccharide containing D-xylofuranose

Nina A. Kocharova ^a, Yuriy A. Knirel ^{a,*}, Aleksander S. Shashkov ^a, Nikolay K. Kochetkov ^a, Elena V. Kholodkova ^b, Evgeny S. Stanislavsky ^b

^a N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow, Russian Federation

b I.I. Mechnikov Institute of Vaccines and Sera, per. Mechnikova 5a, Moscow, Russian Federation

Received 15 February 1994; accepted 28 April 1994

Keywords: Citrobacter freundii O8a,8b; p-Xylofuranose; Structure

Strains of a serologically heterogeneous enterobacterial species *Citrobacter freundii* are subdivided into at least 42 O-serogroups; a few of them, including serogroup O8, are complex. We continue our study of *Citrobacter* O-antigens (Ref [1] and references therein) and now report the structure of the O-specific polysaccharide chain of *C. freundii* subgroup O8a,8b lipopolysaccharide.

Lipopolysaccharide was isolated from dried bacterial cells by extraction with aqueous phenol [2] and degraded with dilute acetic acid. After removal of a lipid precipitate, the water-soluble portion was separated by gel chromatography on Sephadex G-50 to give the O-specific polysaccharide.

Hydrolysis of the polysaccharide with 2 M CF₃CO₂H revealed rhamnose and xylose identified by GLC as alditol acetates in the ratio 3.6:1. The monosaccharides were separated by anion-exchange chromatography in borate buffer, and on the basis of optical rotation, it was concluded that both rhamnose and xylose are D.

The ¹³C NMR spectrum of the polysaccharide contained signals for four anomeric carbons at 98.0, 101.5, 102.7, and 103.4 ppm, three methyl groups of 6-deoxy sugars (C-6 of rhamnose) at 17.7, 18.0, and 18.2 ppm, one hydroxymethyl group (C-5 of xylose) at 61.7 ppm, and other sugar carbons in the region 68.5–79.6 ppm. The ¹H NMR spectrum of the polysaccharide (Fig. 1a) contained signals for four anomeric protons at 4.80, 5.14, 5.25

^{*} Corresponding author.

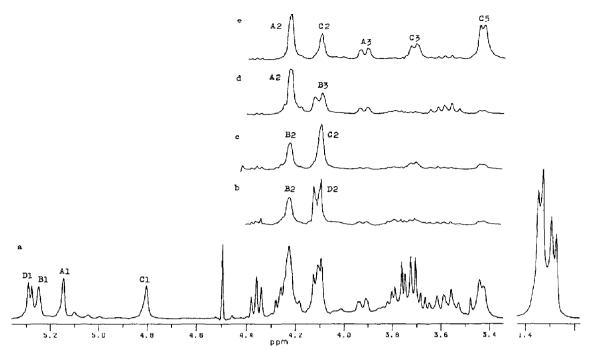


Fig. 1. 250-MHz spectrum of the O-specific polysaccharide of C. freundii O8a,8b (a) and NOE spectra with preirradiation of H-1 of (b) α -Xylf (unit **D**), (c) α -Rhap (unit **B**), (d) α -Rhap (unit **A**), (e) β -Rhap (unit **C**). Arabic numerals refer to the protons in the sugar residues denoted by the letters.

(all broadened singlet-like signals), and 5.28 ppm (d, $J_{1,2}$ 4.5 Hz), three methyl groups of 6-deoxy sugars (H-6 of rhamnose) at 1.28 (d, $J_{5,6}$ 6 Hz) and 1.34 ppm (superposition of two doublets), and other signals in the region 3.4–4.4 ppm.

Therefore, the polysaccharide has a tetrasaccharide repeating unit containing three residues of D-rhamnose (units A-C) and one residue of D-xylose (unit **D**).

Methylation analysis of the polysaccharide resulted in identification of 2,3,5-tri-O-methylxylose, 2,4-di-O-methylrhamnose, 3,4-di-O-methylrhamnose, and 4-O-methylrhamnose identified by GLC as alditol acetates in almost equal amounts. These data showed that the polysaccharide is branched, a xylofuranose residue is the terminal sugar of the side chain, and all residues of rhamnose are pyranosidic, one of them being at the branching point.

The ¹H NMR spectrum of the polysaccharide (Fig. 1a) was completely assigned using 2D shift-correlated spectroscopy (COSY, Table 1). The coupling constants determined from this spectrum showed that all rhamnose residues are pyranoses and the xylose residue is an α -linked furanose (cf. the published data [3]).

The following interresidue proton contacts were revealed from the NOE spectra with selective, sequential pre-irradiation of anomeric protons (Figs. 1b-e): H-1 **D**-H-2 **A** or H-2 **B**, H-1 **B**-H-2 **C**, H-1 **A**-H-3 **B**, and H-1 **C**-H-2 **A** and H-3 **A**. Similar results were obtained when rotating-frame NOE spectroscopy (ROESY) was applied. These data showed that xylofuranose (unit **D**) is attached as a monosaccharide side chain and three rhamnose residues are in the main chain and form the fragment A- $(1 \rightarrow 3)$ -B- $(1 \rightarrow 2)$ - $(1 \rightarrow 1)$. It remains unknown whether unit **C** is linked to unit **A** at position 2 or 3 and whether unit **A** or **B**, having the same position of resonance of H-2, is the site of attachment of the side chain (unit **D**).

Table 1 1 H NMR data for the O-specific polysaccharide of C. freundii O8a,8b (δ in ppm, J in Hz)

	H-1	H-2	H-3	H-4	H-5	H-6		
→3)	-α-D-Rhap-(1 →	(unit A)			-	the transfer of the transfer o		
δ	5.14	4.23	3.92	3.56	3.79	1.34		
J	$J_{1,2} \leq 2$	$J_{2.3} 2.7$	$J_{3.4} 9.5$	$J_{4.5}$ 9.5	$J_{5.6}$ 5.6			
→3)	$-\alpha\text{-D-Rha}p\text{-}(1 \to 2)$	(unit B)	ŕ	ŕ				
δ	5.25	4.23	4.11	3.61	4.21	1.28		
J	$J_{1,2} \le 2$	$J_{2,3} \sim 3$	$J_{3.4} \sim 10$	$J_{4.5} \sim 10$	$J_{5.6}$ 6			
→2)-	$-\beta$ -D-Rha p - $(1 \rightarrow$	(unit C)	-,-	.,-	3,0			
δ	4.80	4.11	3.71	3.44	3.43	1.34		
\boldsymbol{J}	$J_{1,2} \leq 2$	$J_{2.3} \sim 3$	$J_{3.4} \sim 10$					
α-D-X	$\text{Cyl} f \cdot (1 \rightarrow (\text{unit } \mathbf{I}))$	D) ^a	-,-					
δ	5.28	4.11	4.36	4.25	3.77 (H-5a)			
					3.69 (H-5b)			
J	$J_{1,2}$ 4.5	$J_{2,3} \sim 6$	$J_{3,4} \sim 6$	$J_{4,5a}$ 3.6	$J_{4.5b}$ 6.1	$J_{\rm 5a.5b}$ 12.3		
	(4.4)	(5.5)	(5.8)	(3.5)	(5.7)	(12.1)		

^a Data from Ref. [3] are given in parentheses.

With the ¹H NMR spectrum assigned, the ¹³C NMR spectrum of the polysaccharide was assigned using heteronuclear ¹³C, ¹H shift-correlated spectroscopy (Table 2).

The values of the ${}^{1}J_{\text{C-1,H-1}}$ coupling constants determined from the gated-decoupling ${}^{13}\text{C}$ NMR spectrum of the polysaccharide showed [4] that units **A** and **B** are α -linked (${}^{1}J_{\text{C-1,H-1}}$ 171 and 174 Hz, respectively) and unit **C** is β -linked (${}^{1}J_{\text{C-1,H-1}}$ 157 Hz).

As judged by the chemical shift 78.5 ppm for C-3 of unit A, this unit is substituted by unit C at position 3, in agreement with the methylation data (see above). That pre-irradiation of H-1 of unit C causes NOE's on H-2 and H-3 of unit A is typical of β -(1 \rightarrow 3)-linked D-rhamnose disaccharides, in which H-1 of the glycosylating sugar is in close proximity to both H-2 and H-3 of the glycosylated sugar [5].

Table 2

¹³C NMR chemical shifts for the O-specific polysaccharide of C. freundii O8a,8b (δ in ppm)

Unit	C-1	C-2	C-3	C-4	C-5	C-6
\rightarrow 3)- α -D-Rha p -(1 \rightarrow (unit A)	102.7	68.5	78.5	71.6	70.6	18.2 a-
$\rightarrow 3)-\alpha-D-Rhap-(1 \rightarrow (unit \mathbf{B})$ \uparrow	101.5	78.5	77.6	73.3	70.2	18.0 a-
$\rightarrow 2$)- β -D-Rhap- $(1 \rightarrow (\text{unit } \mathbf{C})$	98.0	78.8	74.5	73.8	73.6	17.7 a-
α -D-Xylf- $(1 \rightarrow (\text{unit } \mathbf{D}))$	103.4	78.8	76.2	79.6	61.7	

^a Assignment could be interchanged.

The position of the signal for C-2 of the 2-unsubstituted rhamnose residue at 68.5 ppm indicated that it belongs to unit **A** and, hence, the side chain is attached to unit **B**. In fact, if the branching point is unit **A**, C-2 of 2-unsubstituted unit **B** would resonate near 71.5 ppm [6] (this difference is caused by a strong spatial contact between H-1' and H-2 in β -(1 \rightarrow 3)-linked D-rhamnose disaccharides, like $\mathbf{C} \rightarrow \mathbf{A}$, and the absence of such contact in α -(1 \rightarrow 3)-linked disaccharides, like $\mathbf{A} \rightarrow \mathbf{B}$) [6,7].

Therefore, on the basis of these data, the following structure of the *C. freundii* O8a,8b O-specific polysaccharide was established:

$$\begin{array}{ccc}
\mathbf{D} & \alpha\text{-D-Xyl}f \\
& & 1 \\
\downarrow & \\
2 \\
\rightarrow 3) - \alpha\text{-D-Rha}p - (1 \rightarrow 3) - \alpha\text{-D-Rha}p - (1 \rightarrow 2) - \beta\text{-D-Rha}p - (1 \rightarrow 4) \\
& \mathbf{A} & \mathbf{B} & \mathbf{C}
\end{array}$$

Xylose has been reported [8] to be a component of three strains of *Citrobacter* O-antigens including O8a,8b. To the best of our knowledge, xylofuranose is found for the first time in bacterial polysaccharides.

1. Experimental

General methods.—Gel-permeation chromatography was performed on a column (70×3 cm) of Sephadex G-50 in pyridine-acetate buffer (pH 5.5) and monitored with a Knauer differential refractometer. Anion-exchange chromatography was performed on a column (20×0.6 cm) of Durrum DA $\times 4$ in 0.5 M sodium borate buffer (pH 9.0) at 55°C and monitored by the orcinol-H₂SO₄ reaction. GLC was carried out using a Hewlett-Packard 5890 instrument equipped with a glass capillary column ($25 \text{ m} \times 0.2 \text{ mm}$) of Ultra 1 stationary phase. GLC-MS was performed with a Varian MAT 311 instrument.

The 1H and ^{13}C NMR spectra were recorded on a Bruker AM-300 spectrometer in D_20 at $60^{\circ}C$ using acetone as internal standard ($\delta_{\rm H}\,2.225$ ppm, $\delta_{\rm C}\,31.45$ ppm). Standard Bruker software was used for running two-dimensional spectra. Optical rotations were measured with a Jasco DIP 360 polarimeter at 25°C in water.

C. freundii O8a,8b, strain 64/57 was obtained from the National Collection of Reference Strains (Institute of Hygiene, Prague). Growth of bacteria [1], isolation of lipopolysaccharide [2] and O-specific polysaccharide [1], $[\alpha]_D + 72.2^{\circ}$ (c 1), were performed as described.

For sugar analysis, the polysaccharide (1 mg) was hydrolyzed with 2 M CF₃CO₂H for 1 h at 120°C, sugars were conventionally converted into alditol acetates and analyzed by GLC. For preparing monosaccharides, the polysaccharide (25 mg) was hydrolyzed as above, D-rhamnose, $[\alpha]_D - 7.2^\circ$ (c 1.3), cf. data [8] $[\alpha]_D - 6.13^\circ$ (H₂O), and D-xylose, $[\alpha]_D + 13.5^\circ$ (c 0.43), cf. data [9] $[\alpha]_D + 18.8^\circ$ (H₂O), were isolated by anion-exchange chromatography.

Methylation analysis of the polysaccharide (2 mg) was performed by a published method [10].

Acknowledgements

This work was supported by grant No. 93-03-5839 of the Russian Foundation in Fundamental Sciences.

References

- [1] N.A. Kocharova, J.E. Thomas-Oates, Y.A. Knirel, A.S. Shashkov, U. Dabrowski, N.K. Kochetkov, E.S. Stanislavsky, and E.V. Kholodkova, *Eur. J. Biochem.*, 219 (1994) 653-661.
- [2] O. Westphal and K. Jann, Methods Carbohydr. Chem., 5 (1965) 83-89.
- [3] S.J. Angyal, Carbohydr. Res., 77 (1979) 37-50.
- [4] K. Bock and C. Pedersen, J. Chem. Soc., Perkin Trans. 2, (1974) 293-297.
- [5] G.M. Lipkind, A.S. Shashkov, S.S. Mamyan, and N.K. Kochetkov, Carbohydr. Res., 181 (1988) 1-12.
- [6] G.M. Lipkind, A.S. Shashkov, Y.A. Knirel, E.V. Vinogradov, and N.K. Kochetkov, Carbohydr. Res., 175 (1988) 59-75.
- [7] A.S. Shashkov, G.M. Lipkind, Y.A. Knirel, and N.K. Kochetkov, Magn. Reson. Chem., 26 (1988) 735–747.
- [8] J. Keleti, O. Lüderitz, D. Mlynarcik, and J. Sedlak, Eur. J. Biochem., 20 (1971) 237-244.
- [9] J. Stanek, M. Černý, J. Kocourek, and J. Pacak, *The Monosaccharides*, Publishing House of the Czechoslovak Academy of Sciences, Prague, 1963.
- [10] I. Ciucanu and F. Kerek, Carbohydr. Res., 131 (1984) 209-217.